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Analytical solutions of the linear wave equation of shallow waters on the rotating, spherical surface
have been found for standing as well as for inertial waves. The spheroidal wave operator is shown to
play a central role in this wave equation. Prolate spheroidal angular functions capture the latitude-
longitude anisotropy, the east-west asymmetry, and the Yoshida inhomogeneity of wave propagation on
the rotating spherical surface. The identification of the fundamental role of the spheroidal wave opera-
tor permits an overview over the system’s wave number space. Three regimes can be distinguished.
High-frequency gravity waves do not experience the Yoshida waveguide and exhibit Coriolis-induced
east-west asymmetry. A second, low-frequency regime is exclusively populated by Rossby waves. The
familiar B-plane regime provides the appropriate approximation for equatorial, baroclinic, low-
frequency waves. Gravity waves on the SB-plane exhibit an amplified Coriolis-induced east-west asym-
metry. Validity and limitations of approximate dispersion relations are directly tested against numeri-
cally calculated solutions of the full eigenvalue problem.

PACS number(s): 47.32.—y, 47.35.+1i, 92.60.Dj, 92.10.Hm

I. INTRODUCTION

The first theoretical investigation of the large-scale
response of the ocean-atmosphere system to external tidal
forces was conducted by Laplace [1] in terms of the
linearized Euler equations on the rotating sphere. Since
then, these equations are known as ““the tidal equations,”
although their significance widely exceeds the tidal prob-
lem: the free, linearized Euler equations on the rotating
sphere govern the basic small-amplitude dynamics of the
shallow fluid envelope of a rotating planet. As such they
pose the fundamental linear problem of planetary circula-
tion theory with applications to the atmosphere as well as
to the ocean. These applications include short term,
large-scale phenomena like the tides in the narrow sense,
and long term, large-scale phenomena like the terrestrial
climate problem and the circulation of the atmospheres
of other planets. The generic dynamics of the
overwhelming majority of contemporary numerical circu-
lation models are represented by Laplace’s tidal equa-
tions.

In contrast to the nonrotating case, Laplace observed
that the special form of the rotation vector rendered the
three-dimensional (3D) spherical problem nonseparable.
With “the tidal equation” he established a 2D approxi-
mation, which is separable in spherical coordinates. In
this framework the discussed what is now called the
Lamb wave under the influence of external tidal forces.
Laplace was not able to evaluate the eigensolutions of his
equation. A century later, Margules [2] identified asymp-
totically two classes of solutions: gravity waves and the
now called Rossby waves. An extensive investigation of
these asymptotics by Hough [3] led to the notion of
‘“Hough functions™ for the eigensolutions of Laplace’s ti-
dal equations.

The most comprehensive discussion of the dynamics of
the “tidal” problem to date has been given by Matsuno
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[4] in the framework of the B-plane approximation. In
this Cartesian approximation of the spherical geometry
near the equator Matsuno identified Rossby, mixed
Rossby-gravity, as well as gravity waves, including the
Kelvin wave. He moreover confirmed Yoshida’s hy-
pothesis [5] of an equatorial waveguide. A subsequent
numerical study of the spherical problem by Longuet-
Higgins [6] provided a quantitative representation of the
eigenvalues and eigenfunctions of the tidal equation.
These calculations demonstrated that Matsuno’s theory
was qualitatively complete. However, in spite of its
elegance and fundamental role for the terrestrial climate
problem, the B-plane approximation is not entirely free
from ambiguities. In contrast to Laplace’s tidal equation
it does not provide a physically meaningful nonrotating
limit and postulates, furthermore, an apparently paradox-
ical east-west asymmetry of gravity of waves. For given
mode number and frequency a westward traveling gravity
wave has a different phase speed than its eastward coun-
terpart. Such an asymmetry suggests a Doppler-type
effect due to a relative motion of medium and observer.
However, the “tidal” equations represent a situation
where both medium and observer are corotating and at
rest relative to each other. In the framework of Doppler
theory, these gravity waves should thus be symmetric.

Recently, exact, analytical solutions of the spherical ti-
dal equation have been presented [7] for the special cases
of standing waves and inertial waves. These results show
that the eigenfunctions of the tidal equation are closely
related to spheroidal wave functions and underscore the
baroclinic, low-frequency nature of the B-plane approxi-
mation. At high frequencies, the B-plane approximation
cannot appropriately accommodate the effects of rotation
on the dispersion of gravity waves. In this regime, an al-
ternative approximation of the dispersion relation ap-
plies. Presently, a complete analytical theory of
Laplace’s tidal equations is still not available.
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The “tidal” equations occupy their fundamental posi-
tion in planetary circulation theory essentially due to
their consistency with respect to geometry, dynamics,
and inertial forces, i.e., their covariance with respect to
the 2D non-Euclidean geometry of the spherical surface.
It is noteworthy that Laplace established his form of the
equations some 60 years before Coriolis’s work on
Newton dynamics in rotating systems and-—although
spherical trigonometry was known at the time—some 75
years before Riemann’s systematic discussion of non-
Euclidean geometries. Laplace considered the diagnos-
tics of a barotropic gas. Structurally the same diagnos-
tics hold for shallow water theory in the vertically in-
tegrated (“transport”) form. Linear, as well as nonlinear
shallow water theories in transport form thus preserve
the dynamically essential covariance of Laplace’s tidal
equations. In view of their role for the large-scale circu-
lation, the “tidal” equations are thus primarily the linear
shallow water equations on the rotating sphere. Howev-
er, it has always been questioned whether shallow water
theory can provide a sufficiently rich framework to cap-
ture the relevant features of the large-scale circulation.

Shallow water theory in its generic form has an unreal-
istically trivial vertical structure. But, interestingly
enough, the incorporation of vertical structure, namely,
baroclinicity, into circulation models has been essentially
guided by the spirit of boundary layer theory with little
regard for covariance requirements. The prototype of the
resulting models is the set of the so called “primitive
equations,” constructed from three basic ingredients: (1)
hydrostatics in the vertical, (2) generally a Boussinesq-
type formulation of stratification, and (3) Laplace’s
Coriolis parameter for the representation of inertial
forces. As a mixture of 3D and 2D features, the “primi-
tive equations” are strictly noncovariant. The derivation
of physically meaningful results from these equations re-
quires a sophisticated set of scaling conditions [8] and in
the numerical approach a high degree of sophistication in
the selection of appropriate parameter ranges as well as
in the evaluation of physically meaningful diagnostics
from model results. Access to increasing computer time
did not decrease these problems.

Covariant shallow water theory, on the other hand, is
frequently utilized in numerical studies in the form of
multilayer, reduced-gravity models [9]. This form elimi-
nates fast barotropic waves through the coding-effective
assumption of a quiescent abyss. This is known to be
fairly unrealistic and to ‘“‘increase” relevance reduced-
gravity models had to resort to the equally artificial, but
observationally more ambiguous, reference to an abyssal
“level of no motion.” However, with access to increasing
computer time the relevance issue ceased to be one of
abyssal dogma and became a matter of comparison to ob-
servations. It has now been demonstrated that covariant
shallow water models successfully simulate observable
large-scale features of the ocean circulation: in simple
model versions on seasonal [10] and interannual [11] time
scales and in more elaborate multilayer versions even on
decadal time scales [12]. This success indicates that shal-
low water theory takes advantage of increased numerical
resolution because its covariance captures the fundamen-
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tal dynamical nature of the large-scale circulation. Verti-
cal structure has to comply with covariance requirements
and for multilayer versions this is the case. Shallow wa-
ter theory with the covariant inclusion of vertical varia-
bility as (prognostic or diagnostic) internal variability of a
spatially 2D fluid represents the dynamically appropriate
framework for planetary circulation theory.

The lack of a complete analytical theory of the linear
shallow water equations on the rotating sphere more than
two centuries after their formulation provides a measure
of their complexity. This is partly due to the necessarily
curvilinear nature of the problem. Partial differential
operators in curvilinear coordinates carry coordinate-
dependent coefficients, which complicate the derivation
of higher-order wave equations from the first order equa-
tions of motion. However, these problems are drastically
simplified by utilizing tensor analysis in Riemann space,
invoking in particular the concept of covariant
differentiation. In contrast to the partial derivative, the
covariant derivative ‘“automatically’’ accounts for the
coefficient functions so that the usual differentiation rules
for products and other combinations of tensors apply to
covariant  differentiation. The manipulation of
differential expressions then almost proceeds as in the
case of Cartesian coordinates.

The additional feature to be taken into account is the
non-Euclidean nature of the intrinsic geometry of the 2D
spherical surface (it may be noted that the “3D spheri-
cal” geometry of the “primitive equations” with vertical
coordinate z=r —a, where r is the radial coordinate of
3D Euclidean, spherical geometry and a the Earth’s ra-
dius, is also non-Euclidean). For a non-Euclidean
geometry the Riemann tensor no longer vanishes. This
fourth order tensor is a functional of the metric, measur-
ing the anticommutator of the covariant second order
derivatives of a vector. As a consequence of a nontrivial
Riemannian, the covariant second order derivatives of a
vector no longer commute. This characteristic feature of
tensor analysis in non-Euclidean Riemann space becomes
relevant for the derivation of higher-order wave equa-
tions from the vectorial equations of motion. In the
present paper different forms of the wave equation of
shallow waters on the rotating sphere will be considered
using tensor analysis. For these purposes index notation
is quite effective with indices m,n,. . ., running from 1 to
2, subscripts denoting covariant tensor components, su-
perscripts contravariant components, and the semicolon
for covariant differentiation. Essentials of tensor analysis
can be found in a variety of textbooks [13,14] and the
basic formulas for the 2D geometry of the spherical sur-
face in geophysical coordinates (longitude A, latitude @)
are given in [15] with additional details in the Appendix
to this paper.

In this framework it has been shown [7] that the funda-
mental wave operator of shallow waters on the rotating
sphere is the 2D spheroidal wave equation. The separa-
tion of this wave equation results in ordinary differential
equations with periodic coefficients. Formally similar
problems in other branches of fluid dynamics (stability of
time periodic flow) or in electrodynamics (wave propaga-
tion in an elliptical waveguide) lead to the related
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Mathieu equation. While Floquet theory provides a
comprehensive analysis of Mathieu functions, a compara-
ble tool for spheroidal wave function does not exist. The
major problem stems from the irregular singularity of the
spheroidal wave equation at infinity. This prevents the
establishment of recurrence relations similar to those for
functions of the hypergeometric type [16]. Special case
solutions, as obtained in [7], can thus not be generalized
by means of some algebra in wave number space.

The identification of the prolate spheroidal wave
operator as a key element in the linear shallow water
equations on the rotating spherical surface permits never-
theless a qualitative overview of the system’s wave num-
ber space. The asymptotics of the spheroidal wave opera-
tor yield a set of approximations of the dispersion rela-
tion for different regimes in wave number space, which
essentially link the Margules limits with the 8 plane. In
the paper at hand, the validity and limitations of these
approximations are directly tested against numerical
computations of the eigenfrequencies of rotating, spheri-
cal shallow waters.

The code for the calculation of eigenvalues has been
kindly provided by P. Swarztrauber and is extensively
discussed in [17]. In contrast to the numerical approach
of Longuet-Higgins [6] this code does not require the pri-
or derivation of a wave equation. It rather takes direct
advantage of the fact that shallow water theory
represents a 2D vector field. Expanding the eigensolu-
tions in spherical vector harmonics, the first order equa-
tions of motion are transformed into an infinite, sym-
metric, homogeneous, pentadiagonal linear algebraic sys-
tem. The eigenvalues of this system are readily computed
numerically. Although the B-plane approximation and
the numerical approach have been well established for 30
years, they have—to our knowledge—never been com-
pared in a common format. Besides a direct validity test,
such a comparison elucidates the characteristic dispersive
features of the B-plane regime within the entire wave
number space. In conjunction with the quantitative rep-
resentation of the complete dispersion relation, the set of
analytical approximations obtained here specifies particu-
lar dispersion regimes in wave number space. The
characteristics of these regimes differentiate the wide
range of circulation phenomena, represented by shallow
waters on the rotating spherical surface.

II. WAVE EQUATIONS

On the surface of the rotating sphere the linearized
shallow water equations read

9,r+j%,=0, (2.1a)

atjn+€mnfjm+czanr=0 ’ (21b)

where r denotes a perturbation of the equilibrium mass
per unit area R and the covariant vector
Jn=Rv,=aR (v, cosp,v,) the mass flux density near a
zero-velocity equilibrium. The constant ¢ denotes the
system’s intrinsic phase speed and the latitude-dependent
scalar f=2Qsing is Laplace’s Coriolis parameter. The
components of the antisymmetric Levi-Civita tensor €,,,
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are given in the Appendix. As necessary for a covariant
system, the mass flux density, defined in the divergence
term of the continuity equation, equals the momentum
density, defined in the prognostic term of the momentum
budget. With this identity, the vertically integrated form
(2.1) of a 3D, hydrostatic system satisfies Newton’s first
law in a spatially 2D sense. Correspondingly, Laplace’s
representation of the Coriolos force refers exclusively to a
spatially 2D system.
For the potential vorticity z, defined by

Rz=€e",;,,—fr/R ,
the equations of motion (2.1) imply the relation

RO,z+ f"v,=0 (2.2)

where f" is the contravariant gradient of the Coriolis pa-
rameter. The system’s energy budget

9;,Re+s";,=0
with total energy
Re=1Rv"™,+c?r?/2R

and Poynting vector s, =c?rv, follows by the usual algo-
rithm Newton dynamics from (2.1).

One form of the linear wave equation of shallow waters
on the rotating sphere is obtained by eliminating the
momentum vector from (2.1). To this end take the diver-
gence of (2.1b),

(87 —c*A)r —€™(fim);n =0,

where A denotes the 2D Laplacian of a scalar in spherical
coordinates as defined in the Appendix. With the repeat-
ed use of (2.1b) and €™"¢,,, = —8 the time derivative of
this equation becomes

[0 —c?M)3, +c2e™f,3,, Ir =(f2");, -

Evaluation of the right-hand side (RHS) with the help of
the mass and potential vorticity budgets leads to

[(d2+4 f2—c?A)d, +c2e™f,,,]r=—2R*f3,z . (2.3)

The wave operator on the LHS of (2.3) is the 2D prolate
spheroidal wave operator. It is stressed that the
spheroidal character of this operator is here not a conse-
quence of underlying 3D spheroidal coordinates. The un-
derlying 3D coordinates are spherical and the spheroidal
wave operator appears in (2.3) as a consequence of the
nonvanishing Coriolis parameter. To eliminate the po-
tential vorticity from (2.3) consider the operator

do =gy +enf
with
d*d,,, =32+ )82, .
Application of this operator to (2.1b) yields
@+ f2)j°=—cd"d,r . (2.4)

After scalar multiplication with the covariant gradient of
the Coriolis parameter this can be written with the help
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of (2.2) as
R%3*+f)d,z=c%d"f,0,r .

Hence, on multiplication of (2.3) with (3?+ f2) one ob-
tains

(3+ )32+ f2—c?A)d, +c2€™f,3,, Ir

=—cXd™3,,f%,r . (2.5

This is the linear wave equation of shallow waters on the
rotating sphere in terms of the mass perturbation r.
While this is not identically the prolate spheroidal wave
equation, it is nevertheless obvious that this operator
plays a central role in (2.5).

Alternatively, the wave equation may be written in
terms of the momentum vector. Taking the time deriva-
tive of (2.1b),

8%y — Emnf (€7 fj, +c23™r)+c23,8,r =0,

and using €’™¢,,, = —0&; as well as the continuity equa-
tion in the last term, this becomes

(324 £2)j, —¢2j% gn —C € fO™r =0 . (2.6a)

To evaluate the gradient of the divergence of the momen-
tum flux, use the definition of potential vorticity

€®j;,=R%2z+fr
and define the notation

Ajn :gabjn;ab —a —zjn

so that formula (A2) of the Appendix assumes the form
% =0j, +€,,0UR* 2+ fr) .

Inserting this into (2.6a)
(324 f2—c?A)j, —c?€,,(R¥W2+rf?)=0

and differentiating again with respect to time

(82+ f2—c2A)8, ], + €, [8%(f 2y )+ £%%,1=0  (2.6b)

yields a wave equation in terms of the momentum flux
vector. In contrast to the temporally fifth order, scalar
equation (2.5) this is a temporally third order vector
equation. The prolate spheroidal vector operator is seen
to play a prominent role in (2.6b). While both (2.5) and
(2.6b) exhibit some identifiable structure, they are never-
theless still fairly complex. A more symmetric form of
the wave equation can be obtained with the help of cer-
tain derivatives of (2.6b).

Consider first the scalar product of (2.6b) with the gra-
dient of the Coriolis parameter. To this end evaluate

AL ) =8 " )3 ab
=gab(fnjn;ab +2fn;ajn;b +fn;abjn )
using
fn;m = _fGnm

where G,,, is the Ricci tensor, defined in the Appendix,
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and
Af=f",=—2a7f,
with the result
S Bjy =AU )= (AN
or with (2.1a) and (2.2)
f"Aj,=(Af)d,r —R*Ad,z .

Hence, the scalar product of (2.6b) with the gradient of f
becomes

RY(32+f2—c?A)d, +c2e"™f,d,,18,2=—cAf)?r .
2.7

Together with (2.3) this equation forms a coupled set of
prolate spheroidal wave equations for the mass perturba-
tion r and the potential vorticity z. Furthermore, if (2.7)
is read in terms of Cartesian coordinates (x,y) with
f =Py, i.e., in particular, Af =0, this equation reduces to
the familiar B-plane version of the Matsuno equation.
Equation (2.7) is thus the spherical Matsuno equation.

Similarly, one obtains equations for the cross product
of the gradient of f with the momentum vector

Ru=€e""f,.j,

from (2.6b). Without derivation the equations

[(32+f2—c?A)d, +c?€®f,0, ]r =2Rd,u (2.8a)
and
[(3%+f2—c?A)d, +c2e®f,3, Ju
=—R[(3Z+f2—c2A)d,+c%f,3,1fz (2.8b)

are mentioned here. Equations (2.3)-(2.8) demonstrate
that, in spite of the non-Euclidean geometry, covariant
differentiation renders the evaluation of higher-order
wave equations from the equations of motion (2.1) fairly
straightforward.

On the spherical surface, waves propagate in a funda-
mentally anisotropic environment: only in one direction
is the propagation of waves possible, while standing
waves form in the perpendicular direction. Due to its to-
pology as an unbounded but finite domain, the spherical
surface always acts as a waveguide. On the rotating
sphere the propagation direction is the longitudinal direc-
tion and it can always be chosen as such in the nonrotat-
ing case. This suggests the dependent variables to be of
the form

e —i(wt—Mk)F(y)

where y =sing and F(y) is a latitudinal eigenfunction.
To ensure sufficient differentiability on the entire domain,
the zonal wave number M should be an integer. For func-
tions of this form the scalar, prolate spheroidal wave
operator reduces to the prolate angular operator

M?
P=3 2)3 2,24 .2
y(1—¥7)9, 1—p? a’y Voo
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where v=aw/c, while the Lamb parameter a=2a/c
measures the ratio of the planet’s angular velocity to the
propagation speed of effective pressure perturbations.
For small values of a, prolate angular functions resemble
associated Legendre polynomials, while they behave like
parabolic cylinder functions for large values of the Lamb
parameter. The terrestrial weather and climate systems
operate over a wide range of values of this parameter.
For atmospheric Lamb waves a~1, whereas a~=5 for
barotropic gravity waves in the ocean and a =300 for the
first baroclinic mode in the ocean. For the purposes of
planetary circulation theory, solutions at fixed values of «
are therefore of limited interest and the solution of linear
shallow waters on the rotating sphere has to be deter-
mined for the entire (real and positive) range of the Lamb
parameter.

With wave functions of the above form the coupled
system (2.3) and (2.7) becomes

(P—m)V=—2ayD ,
(P+m)D=2ayV ,

(2.9a)
(2.9b)

where D=r/R and V=aRz/c, while m=aM /v. For
Egs. (2.8) one obtains correspondingly

(P—m)D=-—2aU ,
(P+m)U=—(P—m))yV,

with U=v, cosp/c=au /2cf. The system (2.9) can for-
mally be diagonalized in different ways. For instance,

(P+m)y {P—m)V=—4a>V ,
(P—m)y YP+m)D=—4a’D ,
or
PQRay+m) 'P(V+D)=—Q2ay—m)V+D),
PQay—m) 'P(V—D)=—Qay+m)V—D) .

As in both cases the RHS is not readily incorporated into
a factorized form of the LHS, these equations do not sug-
gest an obvious strategy to evaluate eigensolutions. Simi-
lar expressions are obtained from the U equations. Al-
though the latitudinal eigenfunctions are generally not
just prolate angle functions, these equations indicate nev-
ertheless the fundamental role of the prolate angle opera-
tor.

III. WAVE PROPAGATION ON THE SURFACE
OF THE ROTATING SPHERE

In addition to long gravity waves, rotating sphere shal-
low waters admit the propagation of Rossby waves.
These waves emerge as a consequence of restorative
torques generated by the latitudinally varying Coriolis
force. The notion of “mixed Rossby-gravity” and “Kel-
vin” waves does not refer to qualitatively different waves,
but to the specific organization of eastern and western
branches into modes by the B-plane approximation.
Gravity and Rossby waves in rotating shallow waters are
dynamically related to sound and Alfvén waves in magne-
tohydrodynamics.
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A large part of the dynamical wealth of planetary cir-
culations is due to the fact that the rotating spherical sur-
face provides an anisotropic and inhomogeneous arena
for the propagation of shallow water waves. Besides the
basic latitude-longitude anisotropy, rotation effects on the
spherical surface introduce an east-west asymmetry into
the propagation of waves. However, in a Doppler-type
framework gravity waves are expected to be symmetric,
as long as observer and medium are at rest relative to
each other. In addition to these asymmetries, Yoshida
[5] has pointed out that the rotating spherical surface is
inhomogeneous with respect to latitude. At low frequen-
cies, latitudinal eigenfunctions behave oscillatorily only
in a narrow equatorial belt, the Yoshida waveguide.

The f-plane approximation, successfully employed in
the study of internal gravity waves, does not admit Ross-
by waves, nor does it exhibit anisotropy or inhomogenei-
ty. In contrast, Margules’s asymptotics [2] represent the
anisotropic, globally homogeneous limits of the system.
In the nonrotating case (2=0) one obtains from the
wave equations of the previous section

r=roPM(sinp)e "¢, (3.1a)
Jn="—J008,PM(sinple ~1?, (3.1b)
with j,=irqc?/w, 0=wt —MA, and associated Legendre

polynominals PM. The dispersion relation of these long
gravity waves

v=L(L+1), —L<MZ<L,

or alternatively in terms of the mode number
Ny=L —|M| >0, counting the zeros of the mass pertur-
bation 7 in the open interval y €(—1,1),

Vv?=Ny(No+1)+ (2N, +1)|M|+M?, 3.1c)

is symmetric with respect to the zonal wave number M.

On the other hand, for nondivergent flow the limit

¢2— o, r =const of the Matsuno equation (2.7) yields

(3.2a)
Jn=J0€mmd™PM(sing)le "0, (3.2b)

r =const ,

representing divergence-free Rossby waves with disper-
sion relation

o=—20M/L(L+1), —L=M<O0,

or in terms of the mode number N, =L —|M|>0, here
counting the zeros of j, in the open interval y €(—1,1),

o=—M/[N,(N,+1)+(2N,+1)|M|+M?*] (3.2¢)

with oc=w/2Q. Besides latitude-longitude anisotropy
and global homogeneity these Rossby waves exhibit a
pronounced east-west asymmetry: the propagate west-
ward only. While representing entirely different dynam-
ics, both Margules’s limits correspond to the same value
of the Lamb parameter, a=0. At this value the rotating
spherical surface is globally homogeneous and the latitu-
dinal eigenfunctions are expressed in terms of associated
Legendre polynominals.

For finite a, the Cartesian approximation of the spheri-
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cal geometry near the equator leads to the B-plane ap-
proximation. It then follows from the SB-plane version of
the Matsuno equation (2.7) that the latitudinal eigenfunc-
tions can be approximated in terms of parabolic cylinder
functions. fB-plane dynamics capture the latitude-
longitude anisotropy as well as the east-west asymmetry
of low-frequency gravity waves and Rossby waves. As an
equatorial approximation, the 8 plane applies essentially
inside the Yoshida waveguide. Margules’s asymptotics as
well as Matsuno’s 3 plane thus capture primarily homo-
geneous limits and subdomains.

Exact analytical solutions, which take full account of
the latitudinal inhomogeneity for all values of the Lamb
parameter, have been derived in special cases [7]. Instead
of the diagonalizations of (2.9), less symmetric low-order
closures of the coupled system are considered. To obtain
a closed form of the Matsuno equation (2.9a) eliminate j,
between the continuity equation (2.1a) and the one-
component of the momentum budget (2.1b) with the re-
sult

aD=—(u+y) ' [(1=p?03, —my ]V,

where u=(M?—1+?)/+2. Inserting this expression on the
RHS of (2.9a), the Matsuno equation becomes

(P+m)V=2(u+y>) ' [(1—y2)pd, +mulV . (3.3

The prolate angular operator maintains its dominating
role in this form, while the RHS appears of little advan-
tage for general values of M and v. However, for strictly
standing waves, M =0 and u= —1 so that the Matsuno
equation (3.3) assumes the simple form

[(1—p2)3i—a’y?++* V=0 . (3.4)

This equation is exactly solved by
V=A(1—y)2 S (y;a) .

Here, A is a constant and S} I(y;a) the prolate angular
function of degree L > 1 and order ( —1), where the nega-
tive value has been chosen for correspondence purposes.
From this expression, the full eigensolution for standing
waves on the rotating spherical surface is found as

r=ry(d,—tang)S; 'e ', (3.5a)

j1=—jocos@fS; le it (3.5b)

ja=ijowSL le i, (3.5¢)
with j,=a?r, and dispersion relation

vi=epa(L, ;) , (3.5d)

where €ps(L,K;a)=¢€ps(L,—K;a) denotes the eigenval-
ue corresponding to the prolate angular function
SK(y;a). A closed expression for these eigenvalues does
not exist [16,18]. Furthermore, due to the lack of re-
currence relations, (3.5) has to be given in terms of the
prolate angular function and its first derivatives. This
solution describes essentially standing gravity waves,
where the B-plane approximation denotes the case L =1
as standing mixed Rossby-gravity wave. In contrast to
the nonrotating case, standing waves on the rotating
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spherical surface exhibit a nontrivial j; component. The
latitude of zero curvature of V determines the width of
the Yoshida waveguide, since in the neighborhood of this
latitude the eigensolutions are approximated by Airy
functions. For standing waves the critical latitude is ob-
tained from (3.4) as

sing,,=tw/2Q .

This demonstrates that low-frequency waves are concen-
trated in a narrow belt around the equator, while waves
with frequencies higher than the inertial frequency do not
detect the Yoshida waveguide at all. The solutions (3.5)
thus account for the latitude-longitude anisotropy as well
as the latitudinal inhomogeneity of the rotating spherical
surface. As standing waves they do not exhibit an east-
west asymmetry.

For a=0, prolate angular functions reduce to associat-
ed Legendre polynomials. In the nonrotating limit, (3.5a)
therefore becomes

r=ry(d,—tang)P 'e " .
With the familiar recurrence relations for associated
Legendre polynominals [18] it is readily seen that

d,P; '=P+P; 'tang .

In the nonrotating, globally homogeneous case (3.5) thus
coincides with the Margules limit (3.1) for M =0.

The asymptotics of the prolate angular equation pro-
vide an estimate of the domain of validity of the 3-plane
approximation. Generally, S-plane dynamics are ob-
tained by introducing the Cartesian approximation to the
spherical geometry in the vicinity of the equator, formu-
lating the equations of motion (2.1) in these coordinates,
and finally deriving the system’s wave equation. Con-
versely, it will here be shown that appropriate approxi-
mations of the spherical Matsuno equation lead indeed to
the same result on the 3 plane. The necessary approxi-
mations define the conditions of validity of the B-plane
approximation in physical and wave number space.

Assuming

V=(1—y?)M72Fy)

with n=yV 20 the spherical Matsuno equation (3.3)
transforms to

Qa—n*)3:—2(|M|+1)9d,—Lan*+X1F
n 7 2
=2Y " '[(2a—n*md,— |M|np*+2aum F ,

where X=v*—M?+m and Y=2au+n* For large
a>>1 and 2a>>7%? i.e., in the vicinity of the equator,
y?<<1, this is approximated by the equation for parabol-
ic cylinder functions

(32— 1n*+N,+1)F=0,

which is the familiar B-plane version of the Matsuno
equation with dispersion relation

Vv—[a(2N,+1)+M?*lv—aM =0 , (3.6)

where the mode number N,=L —|M| here counts the
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zeros of V in the open interval &€ (— o, o). It may be
noted that the spectrum of the parabolic cylinder opera-
tor is actually continuous. In the approximation of an
operator with a discrete spectrum, the mode number
emerges here necessarily as an integer, thus selecting
those parabolic cylinder functions which can be
represented in terms of Hermite polynominals. In con-
trast, the conventional derivation of the Matsuno equa-
tion on the B plane has to confine itself quite arbitrarily
to integer mode numbers. Moreover, this derivation of
the equatorial 8 plane can obviously not be generalized to
obtain a ‘“midlatitude B plane.” Besides formal
difficulties to define it as an approximation to the spheri-
cal problem, such a concept would necessarily imply un-
physical features like a “midlatitude waveguide,” midlati-
tude mixed Rossby-gravity waves, and—independent of
coastal trapping—midlatitude Kelvin waves. The S
plane is thus the appropriate approximation for equatori-
al low-frequency waves, if the Lamb parameter is large.
As an asymptotic expansion for large a , the 8 plane ex-
cludes a nonrotating limit and approximates the exterior
of the Yoshida waveguide by an infinite plane. On Earth,
large a refer to baroclinic waves in the ocean. Baroclinic
low-frequency dynamics in the equatorial ocean are
indeed successfully simulated by reduced-gravity models
in B-plane geometry [10,11].

A second exact solution in terms of prolate angular
functions is readily found from a low-order closure of
(2.9b). Evaluation of the two-component of (2.4) yields

aV=—(c*—yp>) " [(1—yp*3,+my1D ,

where 0 =v/a. With this representation of V, Eq. (2.9b)
becomes

(P—m)D=—2c*~p*) " '[(1—y?)yd,+mo?]D . (3.7a)

The structure of (3.7a) is similar to the spherical Matsuno
equation (3.3). A particularly simple form of (3.7a) is ob-
tained for inertial waves with o =1:

M(M—-2)

(1—y%)3%—

2 —a’y*+a®*~M |D=0. (3.7b)

This is exactly solved by
D= A(l—yz)”zSi”_l(y;a) ,

where A denotes a constant amplitude and SM " (y;a)
the prolate angular function of degree L =0 and order
(M—1) with 1—L<M=<L+1. The eigensolutions of
linear shallow waters for inertial waves on the rotating
sphere are found from this expression as

r=rqcospSH le 10, (3.8a)
. M—1 1

=] 3yt + Sle™?, 3.8b

J1=Jo |singd, cosg cosp [S;" e (3.8b)

J2=—ijo(cos@) '[3,+ (M —)tang]SH ~le 7, (3.8¢)
with j,=c2r,/2Q and dispersion relation

vi=al=epp(L,M—1;a)+M . (3.8d)
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The lack of recurrence relations leads again to a represen-
tation of (3.8) in terms of the prolate angular function
and its first derivatives. This solution describes gravity
waves at the inertial frequency w =2}, including the Kel-
vin wave for M =L +1> 0 and the gravity branch of the
mixed Rossby-gravity wave for M =L >0. It accounts
not only for the latitude-longitude anisotropy and latitu-
dinal inhomogeneity, but also for the east-west asym-
metry. As indicated by (3.8d), (M )7#v(—M).

The cosine of latitude in the denominator of the
momentum flux of inertial waves raises the question of
regularity at the poles for this solution. Near the poles
the prolate angular function behaves like [16]

SYy;a)=(1—p )M 2F(L . M—1;a),

where F generally does not vanish. This is sufficient to en-
sure the polar regularity of (3.8), except for M =0 and 2.
For M =2, tabulated values of the spheroidal wave func-
tion [16] show that S} (y ==+1;a)=0. However, it is not
obvious that this value is approached sufficiently fast for
all L and a. At M =0, (3.8) should not only be regular at
the poles, but also coincide with (3.5) at v=a. With re-
gard to the dispersion relations (3.5d) and (3.8d) this
correspondence is obvious. Regularity and correspon-
dence of the solutions can in this case even be checked
directly, since S;'(y;a?=¢p,) is known in closed form
[16]. For even L

S, Uy;at=epn)= 4 sin(asing) /cosp

with constant A is a regular prolate angular function, if a
is an even multiple of 7/2. A similar expression holds
for odd L [16]. Thus, if a is for instance an even multiple
of 7 /2, the solutions (3.5) and (3.8) become

r ~cos(asing) ,
J1~singsin(a sing) ,
Jo~sin(asing)/cosg .

This demonstrates that at M =0 regular and common
solutions (3.5) and (3.8) exact, although not for arbitrary
values of the Lamb parameter. Hence standing waves at
©=2£) only occur if o assumes certain specific values. It
is furthermore noted that for M =1 and 2 Eq. (3.7b) has
exact solutions in terms of Mathieu functions. However,
at these values of M the full wave function is not continu-
ous for all longitudes AE[0,27].

Exact solutions in terms of prolate angular functions
capture the latitude-longitude anisotropy and the east-
west asymmetry as well as the latitudinal inhomogeneity
of the rotating spherical surface. In contrast to associat-
ed Legendre polynomials or parabolic cylinder functions
they are capable of representing an equatorial waveguide
on the finite spherical surface, where the inhomogeneity-
scale—i.e., the width of the Yoshida waveguide —is con-
trolled by the Lamb parameter. In the corresponding
limits the prolate angular functions reproduced
Margules’s asymptotics and the B-plane approximation,
respectively. At sufficiently high frequencies, gravity
waves are no longer confined by an equatorial waveguide,
but propagate on a globally homogeneous, though aniso-
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tropic spherical surface. From an alternative viewpoint,
the Lamb parameter appears as the remnant of a vertical
wave number in a vertically integrated, strictly horizontal
system and the dependence of eigenfrequencies and eigen-
functions on this “wave number” as a rotation-induced
‘““vertical dispersion.” In a two-layer model, the barotro-
pic eigenfrequency o ,(L,M;a,) and the baroclinic eigen-
frequency w,(L,M;a,) at the same L and M belong to
different eigenfunctions SM(y;a,) and SM(y;a,), respec-
tively. In the nonrotating limit these eigenfunctions
reduce to the same associated Legendre polynominal
PM(y) and the system becomes strictly nondispersive.
There is, nevertheless, a pronounced difference between
the Lamb parameter and a wave number in the proper
sense: for given a the prolate angular functions form a
complete, orthonormal set of basis functions, while this is
not the case for given L and M. The Lamb parameter
provides the link between covariant, linear shallow wa-
ters and vertical variability that maintains consistency
with respect to Laplace’s representation of inertial forces
on the rotating spherical surface. Obviously, this vertical
variability has to appear as internal variability of a strict-
ly 2D fluid. The representation of vertical variability in
terms of a set of Lamb parameters and a vertical wave
number is not only redundant, but will generally be in-
consistent. In practice, prolate angular functions are the
appropriate set of basis functions for a rotating, shallow
few-layer fluid on the global domain.

IV. THE DISPERSION RELATION

While exact eigensolutions could here only be obtained
in special cases, the identification of the role of the pro-
late spheroidal wave operator is nevertheless sufficient for
a qualitative overview of the system’s wave number
space. The asymptotics of this operator yield a set of ap-
proximations of the dispersion relation, which link the
Margules limits with the 8 plane. These approximations
are here tested against numerical solutions of the full ei-
genvalue problem of shallow waters on the rotating
spherical surface.

Benchmarks for these approximations are provided by
the exact dispersion relations (3.5d) and (3.8d) as well as
the Margules limits (3.1c) and (3.2¢). The prolate angular
eigenvalues are explicitly known [16,18] in terms of the
power series

epa(L,K;a)=A2+a*(2A*—2K>—1)/(4A*—3)+ - - -
(4.1a)
wit.h A2=L§L +1), or for large a in terms of the asymp-
totic expansion
epalL,K;a)=aq—2 % 2p+3—4K?)

—(16a) " 'g(p+3—8K2)— - -+ (4.1b)
with ¢=2N+1, p=N(N+1), and N=L—|K|.
Higher-order terms are given in [16,18] and the optimal
matching of both expressions depends on L, K, and «a.
The dispersion relations (3.5d) with K= —1 and (3.8d)
with K =M —1 can be evaluated with (4.1) to an arbi-

trary degree of accuracy. For wave numbers M = —1,0,1
Fig. 1 shows these eigenfrequencies in comparison to nu-
merically computed eigenfrequencies as a function of the
Lamb parameter . Similar figures of numerical solu-
tions of the eigenvalue problem have been obtained by
Longuet-Higgins [6], who shows 0 =v/a vs 1/a. For all
three wave numbers the intersections of the dashed line
v=a with the solid lines have been calculated with (3.8d),
while the solid lines represent numerical computations.
These computations use the Swarztrauber-Kasahara code
[17] to solve the equations of motion (2.1) numerically.
In Fig. 1(b), the solid lines represent in fact two calcula-
tions: numerical solutions of the eigenvalue problem and
(3.5d). Both results obviously coincide. For a=0 the nu-
merical code [17] reproduces the Margules limits (3.1c)
and (3.2¢).

Figure 1(a) clearly shows low-frequency Rossby waves,
well separated by the mixed Rossby-gravity wave from
higher-frequency gravity modes. The standing waves in
Fig. 1(b) are gravity waves, where the -plane approxima-
tion denotes the lowest mode as mixed Rossby-gravity
wave. Figure 1(c) depicts eastward traveling gravity
waves with the distinguished behavior of the Kelvin
mode (N,=0) for large values of a. In the B-plane ap-
proximation, the mode Ny,=1 is considered the gravity
branch of the mixed Rossby-gravity wave. Figure 1 indi-
cates a pronounced difference in the behavior of v for
small and large values of a, corresponding to the approxi-
mation of prolate angular functions in terms of associated
Legendre polynomials or parabolic cylinder functions.
The transition region is approximately given by
1<a <10, where these approximations converge poorly
in comparison to the left and right boundary regions of
the diagrams. Under terrestrial conditions, this transi-
tion range is occupied by Lamb waves, atmospheric grav-
ity, and Rossby waves as well as barotropic waves in the
ocean.

For inertial waves (3.8), the east-west asymmetry can
be evaluated explicitly. According to (4.1b) the mode
number in this case is given as N,=L —|M — 1|, count-
ing the numbers of zeros of the mass perturbation r in the
open interval y&€(—1,1). For given Lamb parameter
and mode number, (3.8d) has two solutions and with

20 149

FREQUENCY v
0.3

LAMB PARAMETER «

FIG. 1. Nondimensional frequency v=aw/c versus Lamb
parameter 0.3 <a=2aQ/c =300 in logarithmic scales for mode
numbers 0 <N, <5. Dashed line: v=a. (a) Zonal wave num-
ber M= —1. Solid lines: numerical computations. (b) Zonal
wave number M =0. Solid lines: numerical computations and
(3.5d). (c) Zonal wave number M =1. Solid lines: numerical
computations.
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(4.1b) one obtains to O(a®)
My, w=1%tV &’ —ag+1ip
such that

My |=Mz;—1<Mj . 4.2)

This inequality is maintained if higher-order terms of
(4.1b) are included or (4.1a) is used for small a with
L=N,+ |M—1|. The inequality (4.2) states that a coro-
tating observer finds a smaller phase speed for eastward
traveling inertial waves than for their westward counter-
parts at the same frequency and mode number.

To evaluate the physics of this asymmetry, assume a
Doppler-type approach and consider the effect of relative
motion between medium and observer on the rotating
sphere. The stationary, zonal flow

R =const, U,=a’U(cos’p,0)

with constant U is an exact solution of the fully nonlinear
shallow water equations on the rotating spherical surface.
It is uncritical in the present context that this solution
generally requires some external time-independent forc-
ing for arbitrary values of U. This stationary flow is non-
divergent and exhibits the shear

U,;m =€mn Using .

Linearization of the shallow water equations around this
equilibrium leads to

(8, +Ud)r+j%,=0,

(3,+U9,)j, +€n, Fi™+c2,r=0,

where F=2(Q+ U)sing. On the spherical surface, the
stationary mean flow is s€en to introduce two effects in
comparison to (2.1): first, the partial time derivative is re-
placed by the substantial derivative following the mean
flow. This is the Doppler effect in the familiar sense.
Secondly, the shear of the zonal flow modifies the Coriolis
parameter. As a stationary zonal flow on a spherical sur-
face will generally be a shear flow, this additional shear
effect will always appear for a medium moving relative to
the observer. For the above system it is in particular ob-
vious that the shear of a westward flow with U=—Q
(i.e., a medium at rest with respect to a nonrotating ob-
server) completely compensates the Coriolis effect. Con-
versely, this implies that the effect of the Coriolis term on
the dispersion of gravity waves on the rotating spherical
surface is physically equivalent to the shear effect of a
stationary, eastward zonal flow on the dispersion of grav-
ity waves on the nonrotating sphere, as seen by an ob-
server moving with the flow.

For general values of U the dispersion relation of the
above system

o, w0, (L,M;a,)

has the same form as the dispersion relation of (2.1),
where w, =w— UM is the frequency seen by an observer
moving with the flow and a,=2a(Q+ U)/c. In the case
of a westward current with U= —QQ the corotating ob-
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server will find gravity waves with
v=VL(L+1)—1aM ,

i.e., the eastward propagation of gravity waves with
M >2V'L(L+1)/a is inhibited, while stationary pertur-
bations (v=0) can propagate with M =2V L(L+1)/a
(provided, of course, the RHS of this equation assumes an
integer value). Rossby waves do not propagate on this
flow. On the other hand, for a westward current with
U= —2Q an observer moving with the flow will see east-
ward propagating Rossby waves only. In the nondiver-
gent case, they satisfy the dispersion relation

0, =20M/L(L+1), O<M=L,

while an observer rotating with the sphere still sees west-
ward traveling Rossby waves

0=20M[1—L(L+1)]/L(L+1) .

These considerations demonstrate that the Lamb parame-
ter captures the Coriolis effect, as well as shear effects of
stationary, zonal flows on the dispersion of shallow water
waves on the rotating spherical surface. Zonal currents
on the surface of the sphere necessarily exhibit shear. In
addition to the usual Doppler effect this shear introduces
an east-west asymmetry into the propagation of waves
that is still seen by an observer moving with the flow.
The east-west asymmetry introduced by the Coriolis term
is physically closely related to this shear-induced Doppler
effect.

The same east-west asymmetry is exhibited by gravity
waves with v>>a. In this frequency domain the denomi-
nator on the RHS of (3.7a) can be Taylor expanded. For
(3.7a) this expansion yields an approximate prolate angu-
lar equation with the eigenvalue relation

v3—epA(L,M;a)v+aMz0 .

The gravity modes which satisfy the defining inequality
are thus given as the roots

vy =2vyCO8Y > a (4.3)

of this dispersion relation with v3=e€p, /3 and
y =1L arccos(—aM /2v}) .

The domain of validity of (4.3) in Fig. 1 is the upper left
corner above the dashed line. For a=5 and mode num-
bers 2<N,=L —|M| <10 these gravity modes are shown
in Fig. 2 as a function of the zonal wave number M in
comparison to numerically computed eigenfrequencies of
the full system. For all mode numbers, (4.3) has been cal-
culated with the power series expansion (4.1a) for €p, to
O(a?). Discrepancies appear at low N, and small wave
numbers M. For sufficiently high frequencies, however,
(4.3) provides a good approximation to the eigenfrequen-
cies of long gravity waves on the rotating spherical sur-
face. In agreement with (4.2) the dispersion diagram ex-
hibits east-west asymmetry: westward branches are
steeper than their eastward counterparts. For a=0, (4.3)
reduces to the Margules limit (3.1c) and the east- and
westward branches become symmetrical with respect to
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FREQUENCY v

ZONAL WAVE NUMBER M

FIG. 2. Normal east-west asymmetry of gravity waves: west-
ward branches are steeper than eastward branches. Nondimen-
sional gravity frequencies v=aw/c versus zonal wave number
M for modes 2< Ny, <10 and Lamb parameter a=5. Solid
lines: (4.3), dashed lines: numerical computations.

M =0. For increasing a discrepancies expand to higher
mode numbers. However, with the inclusion of higher-
order terms of (4.1a) it can always be achieved that agree-
ment at v=q is fair and becomes rapidly better for v> a.
For M =0, (4.3) does not reduce exactly to (3.5d), al-
though Fig. 2 indicates satisfactory quantitative agree-
ment for sufficiently large v. For all values of a, gravity
waves, which are well approximated by (4.3) do not ex-
perience an equatorial waveguide. These gravity waves
gain large-scale relevance, if the Lamb parameter is
small. On Earth this is the case for Lamb waves, atmos-
pheric gravity waves, and barotropic gravity waves in the
ocean, where the latter are of particular significance for
the ocean’s response to external tidal forces. On a slowly
rotating planet like Venus, gravity waves (4.3) play a
dominating role on large scales.

A second regime in wave number space is defined by
the inequality M?>>+2. In this case u>>1 and the
denominator on the RHS of the Matsuno equation (3.3)
can be Taylor expanded. This expansion leads to an ap-
proximation of the Matsuno equation in terms of a pro-
late angular equation with the eigenvalue relation

v —epa(L,M;a)v—aM =0 .

The roots of this dispersion relation, which satisfy the
defining inequality
v,=—2vcos(y +1m) < |M| 4.4)
where v§=€p, /3 and
y =1L arccos(aM /2v})

represent Rossby waves. The domain of validity of (4.4)
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in Fig. 1(a) is the part below a horizontal line (not shown)
v=1. For a=5 and mode numbers 0XN,=L —|M| <5
the Rossby frequencies o, =v, /a are shown in Fig. 3 as a
function of M in comparison to numerically computed
eigenfrequencies of the full system. For N,>0 the
dispersion relation (4.4) has been evaluated with the ex-
pansion (4.1a) of €p, to O(a?), while for N, =0 (the Ross-
by branch of the mixed Rossby-gravity mode) the expan-
sion (4.1b) to O(a®) has been used. Except for small |M |
in the mixed Rossby-gravity mode, agreement is general-
ly good. Inspection of Fig. 1(a) shows that for a=35 the
frequency of the mixed Rossby-gravity mode at M =—1
is larger than 1 and thus outside the domain of validity of
(4.4).

For ¢ — «, i.e., a—0, the eigenfrequencies (4.4) reduce
to the Margules limit (3.2c). In the opposite extreme
a>>1 they approach the familiar B-plane values. In con-
trast to the Margules limit and the S plane, the approxi-
mation (4.4) holds for Rossby waves at all values of the
Lamb parameter and is not restricted to the vicinity of
the equator. Since the regime-defining inequality involves
wave numbers and frequencies only, (4.4) applies in the
entire physical space. It includes in particular those
Rossby waves which are frequently represented in terms
of a “midlatitude B plane.” As pointed out in the previ-
ous section such a concept is formally as well as physical-
ly inconsistent, while the approximation (4.4) is free of
these difficulties. Baroclinic Rossby waves in the midlati-
tude Pacific play an important role in the long-term
aftereffects of an El Nino event [12].

Linear SB-plane dynamics approximate low-frequency
waves in the equatorial waveguide for large values of the
Lamb parameter. The dispersive properties of gravity
and Rossby waves on the 3 plane are given by the roots
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FIG. 3. Nondimensional Rossby frequencies o=w/2Q

versus zonal wave number M for modes 0<N, =5 and Lamb
parameter a=5. Solid lines: (4.4), dashed lines: numerical
computations.
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of (3.6). For N, >0, the low-frequency gravity waves are
represented by the root

vy =2V, COSY (4.5a)
while the Rossby modes are
v, =~ —2vgcos(y + 1) (4.5b)

with v3=[a(2N,+1)+M?]/3 and
y =1 arccos(aM /2v}) .

A major insight of Matsuno’s analysis of linear B-plane
dynamics was the identification of the role of mixed
Rossby-gravity and Kelvin waves. For N, =0, only the
root

Vg =AM+ 1V M +4a (4.5¢)
of (3.6) is taken, which combines the eastward gravity
branch for N,=0 with the highest westward Rossby
branch into the mixed Rossby-gravity mode. Finally, the
Kelvin wave is the trivial solution of the B-plane version
of the Matsuno equation and its dispersion relation is
consequently not included in (3.6). Rather, it has to be
reevaluated from the equations of motion as

v, =MO(M) , (4.5d)

where © here denotes the unit step function. For a=100
and N, =<3 the dispersion relation (4.5) is shown in Fig. 4
in comparison to numerically computed eigenfrequencies
of the full problem. The agreement is generally good.
For increasing a the agreement improves, while for
smaller a or higher frequencies discrepancies emerge. As
a large-a approximation, (3.6) does not reduce to the

FREQUENCY v

ZONAL WAVE NUMBER M

FIG. 4. p-plane dispersion relation. Nondimensional fre-
quencies v=aw/c versus zonal wave number M for modes
N, =3 and Lamb parameter a=100. Solid lines: (3.6), dashed
lines: numerical computations.
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Margules limits for vanishing Lamb parameter. While
(3.6) does not exactly reduce to (3.8d) for strictly standing
waves with M =0, Fig. 4 shows nevertheless that quanti-
tative agreement is satisfactory. In Fig. 1 the domain of
validity of the equatorial 8 plane is the lower right of the
diagrams, below the dashed line and to the right of a
vertical line (not shown) a=1. The 3 plane thus excludes
high-frequency gravity waves (v=a) and barotropic
Rossby waves (a <1).

A prominent feature in Fig. 4 is the east-west asym-
metry of the gravity modes (4.5a). For given frequency
and mode number N, Fig. 4 clearly indicates

My | >Mg .

In obvious contrast to (4.2) eastward propagating gravity
waves have a higher phase speed than their westward
counterparts at the same frequency and mode number. It
will here be demonstrated that this difference is in fact an
enhanced east-west asymmetry of the type (4.2). To this
end notice that the dispersion relations (3.1c), (3.8d), and
(4.3) utilize a mode number N, while (3.2¢), (3.5d), (3.6),
and (4.4) organize modes with respect to N,. Both of
these numbers represent physically different quantities:
N, is the number of zeros of the mass perturbation r,
while N, counts the zeros of the latitudinal momentum
component j,. To evaluate the role of these wave num-
bers consider the eigenfrequencies of gravity waves in ei-
ther representation. Figure 5 shows numerically comput-
ed eigenfrequencies of gravity waves for 0 <N, <10 at
Lamb parameters a=0,5,100. Figure 6 depicts exactly
the same eigenfrequencies, here, however, combined into
modes according to constant N,. It is pointed out that
Fig. 5 does not show the roots of (3.6). These roots ex-
hibit additional quantitative discrepancies with numeri-
cally calculated eigenvalues due to the fact that (3.6) in-
volves only terms of O(a®) of (4.1b). These quantitative
discrepancies can partly be decreased by including
higher-order terms of (4.1b) into (3.6). The qualitative
feature of interest here is the fact that the SB-plane ap-

(a) (b)

a=0 a=5
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FIG. 5. Enhanced east-west asymmetry of low-frequency
gravity waves: westward branches of low gravity modes are
shifted upwards with increasing a. Numerically computed,
nondimensional gravity frequencies for 0 <N, <10. (a) For
Lamb parameter a=0. (b) For Lamb parameter a=35. (c) For
Lamb parameter a=100.
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FIG. 6. As Fig. 5, but modes labeled by N, =N, —sgn(M).

proximation necessarily provides the eigenfrequencies in
the N, representation due to the very nature of the
Matsuno equation. It is furthermore emphasized that on
the spherical surface only eigenfrequencies at integer
values of the zonal wave number M are physically mean-
ingful. Lines in Figs. 5 and 6 have merely an auxiliary
function indicating which eigenfrequencies are con-
sidered as members of one mode. For increasing «, the
N, representation, Fig. 5, develops a jump between M =0
and —1, while for frequencies v = a the characteristics of
Fig. 2, namely, the east-west asymmetry corresponding to
(4.2), are retained. The N, representation, on the other
hand, yields the familiar B-plane diagram, Fig. 5(c), for
large a. With decreasing «, this representation develops
a minimum at M = —1. In contrast to the implications of
(3.6) this minimum does not approach the axis M =0 nor
does the steepness of eastern and western branches de-
crease with increasing V,.

The comparison of Figs. 5 and 6 demonstrates the
modification of the dispersion of low-frequency gravity
waves with varying Lamb parameter: for larger a the
westward branches not only steepen, but are translated to
higher frequencies. Due to this translation eigenfrequen-
cies with constant

N,=N,—sgn(M)

can be combined into one mode. This relation between
N, and N, ensures the same symmetry with respect to
the equator for the eigensolutions of all members of one
mode in both representations. The different east-west
asymmetry of the S plane thus emerges in fact as an
enhanced east-west asymmetry of the type (4.2). The
reason for the upward translation of westward low-
frequency gravity branches is the emergence of Rossby
waves in this part of wave number space: the uniqueness
of a wave prohibits the intersection of the dispersion
curves of Rossby and gravity waves. The amplified east-
west asymmetry of gravity waves in the B-plane regime is
thus the necessary condition for the coexistence of Ross-
by waves and low-frequency gravity waves in the Yoshida
waveguide.

Although the labeling of gravity modes by the mode
number N, leads to good quantitative agreement in the
B-plane regime, it is not quite unproblematic. In contrast
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to the discrete wave number M, the standard SB-plane
concept refers to a continuous wave number k =M /a so
that in particular the group velocity u =(6ka))N2 as the

speed of energy propagation is always well defined. In
this framework, standing gravity waves on the 8 plane
(k=0) exhibit a finite group velocity, while westward
propagating gravity waves with wave number k, defined
by u(ky)=0, are not associated with a flow of energy. In
the N, representation, on the other hand, a group veloci-
ty of the above form is not even defined in this domain of
wave number space. Figures 5 and 6 thus primarily indi-
cate that neither the mode number N, nor N, is ap-
propriate over the entire wave number space. The only
parameters consistent in the entire wave number space
are the zonal wave number M and the degree L of the
prolate angular function.

Under terrestrial conditions the dispersive properties
of the B-plane regime are those of equatorial, baroclinic
low-frequency waves in the ocean. These waves are of
major significance in climate dynamics. The now widely
known El Nino phenomenon, for instance, is essentially
triggered by baroclinic Kelvin waves, generated by
changing winds in the western equatorial Pacific [11].

V. CONCLUSION

With respect to dynamics as well as diagnostics,
Laplace’s tidal equations are the linear shallow water
equations on the rotating spherical surface. These equa-
tions are a spatially 2D, covariant, and separable approx-
imation to the covariant and nonseparable 3D problem.
Covariant differentiation renders tensor analysis on the
non-Euclidean spherical surface straightforward. The
prolate spheroidal wave operator plays a fundamental
role in the system’s wave equation. Only in special cases
can its latitudinal eigenfunctions be represented as simple
combinations of trigonometric functions and prolate an-
gular functions. The form of the wave equations indi-
cates nevertheless that these functions are a key element
of the general solution.

The rotating spherical surface provides an anisotropic
and inhomogeneous arena for the propagation of Rossby
and long gravity waves. The fundamental latitude-
longitude anisotropy is due to its topology, while the
Coriolis effect introduces an additional east-west asym-
metry, physically similar to the asymmetry induced by
the shear of a stationary, zonal flow. The joint action of
rotation and a finite intrinsic phase speed of shallow wa-
ters lead to a latitudinal inhomogeneity, which confines
low-frequency waves to an equatorial waveguide. Prolate
angular functions represent this inhomogeneity on the
finite spherical surface, where the width of the Yoshida
waveguide is controlled by the Lamb parameter. As this
parameter distinguishes barotropic and baroclinic phase
speeds, it also permits the consistent incorporation of
vertical variability into rotating, spherical shallow waters
as internal variability of an otherwise 2D fluid. For
linearizations around a stationary, zonal flow, the Lamb
parameter captures the necessary shear effects of such
flows on the spherical surface.

In the wave number space of shallow waters on the ro-
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tating spherical surface three regimes with distinct
dispersion properties have been identified. For gravity
waves at and above the inertial frequency the rotating
sphere is globally homogeneous and an equatorial
waveguide does not exist. In addition to the latitude-
longitude anisotropy, these gravity waves exhibit
Coriolis-induced east-west asymmetry with stepper west-
ward branches of the dispersion diagram. Barotropic
gravity waves in the ocean, generated by external tidal
forces, propagate in this regime. A second, low-
frequency regime of Rossby waves can be distinguished
for all values of the Lamb parameter. Besides Margules’s
nondivergent Rossby waves and Rossby waves on the
equatorial 3 plane, this regime includes midlatitude Ross-
by waves, which are frequently represented in terms of a
“midlatitude 3 plane.” The approximations obtained here
avoid the inherent inconsistencies of this concept. Final-
ly, for large values of the Lamb parameter, the B plane
admits gravity and Rossby waves with frequencies well
below the inertial frequency, coexisting in the Yoshida
waveguide. As a consequence of the emergence of Ross-
by waves in the westward part of wave number space, the
east-west asymmetry of low-frequency gravity waves is
enhanced: westward gravity branches are not only
steeper than their eastward counterparts, but are also
translated to higher frequencies. Under terrestrial condi-
tions the pJB-plane regime represents baroclinic low-
frequency waves in the equatorial ocean. These waves
are of major significance for the terrestrial climate prob-
lem, as indicated by the crucial role of baroclinic Kelvin
waves in the equatorial Pacific for the El Nino
phenomenon. Exact dispersion relations for strictly
standing waves and for inertial waves, as well as the Mar-
gules limits, provide benchmarks for analytical approxi-
mations and numerical computations of the eigenfrequen-
cies of linear shallow water on the rotating spherical sur-
face.
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APPENDIX

For curvilinear coordinates A (longitude) and ¢ (lati-
tude) on the surface of a sphere of radius a the covariant
metric is given as

a’cos’p 0

0 a’

&mn (AD

and the covariant components of the Levi Civita pseu-
dotensor assume the values
€mn=(—1 )nvdetgab

if m¥n and vanish otherwise. The nonvanishing values
of the Christoffel symbols are

D. MULLER AND J. J. O’BRIEN 51

[},=Tj=—tang,
'}, =sing cosg .

The Ricci tensor is defined as a contraction of the
Riemannian

Gmn =gabGambn
and has for the particular metric (A1) the form
Gmn =a —2gmn -

The Riemannian corresponding to (A1) can be written as
Gambn =8ab Gmn —8anCGmp -

The covariant derivative of a covariant vector is
Vinsn =0, Vin —T0n Vs
and of a contravariant vector
V" ,=9,V"+TInVve.
For the covariant derivative of a mixed tensor one has
™, ,=9,T™,—T5, T, +TnT", .
The Laplacian of a scalar is
AS=(3"S);,=(3,+TI, )3"S
=a "*(cos %33 +3 —tangd,)S

and its eigenfunctions are the spherical harmonics. The

twofold covariant differentiation of a vector
. =y . b
Va’mn - Va’nm +Gbamn |4

does not commute, since the Riemannian does not van-
ish. The Laplacian of a covariant vector is

gV, ;0 =, +T%,)3°V, —2T%,3°V,
+g“T5, T+ T, T =0, ) Vm
with longitudinal component
g%V, =a (cos’@d} +9} +tangd, + 1)V,
—2a "*tangd, V,
and latitudinal component
8%V 33 =a " *(cos " @d} +3% —tangd ,—tan’p)V,
+2(a cosp) *tangd, V; .

The gradient of a spherical harmonic
En = an Y[A:!
is an eigenvector of the vector Laplacian with eigenvalue

E=[L(L+1)—1]/a® With the gradient of a spherical
harmonic the rotated gradient

E,=¢,,, 0" Y

is also an eigenvector. For the non-Euclidean geometry
of the spherical surface the gradient of the divergence of
a vector becomes

Va;an :gab( Vn >ab +ena ersVs;rb )—Gan ve. (A2)
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